4.4 Article Proceedings Paper

5-Aminolaevulinic acid dehydratase: metals, mutants and mechanism

期刊

BIOCHEMICAL SOCIETY TRANSACTIONS
卷 30, 期 -, 页码 584-590

出版社

PORTLAND PRESS
DOI: 10.1042/bst0300584

关键词

porphobilinogen synthase; tetrapyrroles; X-ray crystallography

向作者/读者索取更多资源

5-Aminolaevulinic acid dehydratase catalyses the formation of porphobilinogen from two molecules of 5-aminolaevulinic acid. The studies described highlight the importance of a bivalent metal ion and two active-site lysine residues for the functioning of 5-aminolaevulinic acid dehydratase. Dehydratases fall into two main categories: zinc-dependent enzymes and magnesium-dependent enzymes. Mutations that introduced zinc-binding ligands into a magnesium-dependent enzyme conferred an absolute requirement for zinc. Mutagenesis of lysine residues 247 and 195 in the Escherichia coli enzyme lead to dramatic effects on enzyme activity, with lysine 247 being absolutely essential. Mutation of either lysine 247 or 195 to cysteine, and treatment of the mutant enzyme with 2-bromethylamine, resulted in the recovery of substantial enzyme activity. The effects of the site-directed alkylating inhibitor, 5-chlorolaevulinic acid, and 4,7-dioxosebacic acid, a putative intermediate analogue, were investigated by X-ray crystallography. These inhibitors reacted with both active-site lysine residues. The role of these two lysine residues in the enzyme mechanism is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据