4.6 Article

THE FIRST FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

期刊

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
卷 187, 期 2, 页码 460-494

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0067-0049/187/2/460

关键词

catalogs; gamma rays: general; pulsars: general; stars: neutron

资金

  1. National Aeronautics and Space Administration
  2. Department of Energy in the United States
  3. Commissariat a l'Energie Atomique
  4. Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France
  5. Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy
  6. Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  7. High Energy Accelerator Research Organization (KEK)
  8. Japan Aerospace Exploration Agency (JAXA) in Japan
  9. K. A. Wallenberg Foundation
  10. Swedish National Space Board in Sweden
  11. Istituto Nazionale di Astrofisica in Italy
  12. Centre National d'Etudes Spatiales in France
  13. Commonwealth Government
  14. Science and Technology Facilities Council [ST/G002487/1] Funding Source: researchfish
  15. STFC [ST/G002487/1] Funding Source: UKRI
  16. ICREA Funding Source: Custom

向作者/读者索取更多资源

The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range similar to 1-5 GeV. The rotational energy-loss rate ((E) over dot) of these neutron stars spans five decades, from similar to 3 x 10(33) erg s(-1) to 5 x 10(38) erg s(-1), and the apparent efficiencies for conversion to gammaray emission range from similar to 0.1% to similar to unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by greater than or similar to 0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer magnetosphere, while polar-cap emission remains plausible for a remaining few. Spatial associations imply that many of these pulsars power pulsar wind nebulae. Finally, these discoveries suggest that gamma-ray-selected young pulsars are born at a rate comparable to that of their radio-selected cousins and that the birthrate of all young gamma-ray-detected pulsars is a substantial fraction of the expected Galactic supernova rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据