4.5 Article

Vasoactivity of diadenosine polyphosphates in human small mesenteric resistance arteries

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.302.2.787

关键词

-

向作者/读者索取更多资源

Diadenosine polyphosphates (ApnA) (n=3-6) induced vasoconstrictions in isolated human mesenteric resistance arteries (hMRAs) mounted in a microvessel myograph (rank order of potency: Ap5A>Ap6A>Ap4A>Ap3A). The contractile effects of ApnA in hMRA were similar to their effects in rat MRA investigated previously. ATP, ADP, AMP, and adenosine had less contractile potency than ApnA, suggesting that the observed effects were not induced by the degradation products of ApnA. Ap4A- and Ap5A-induced vasoconstriction was inhibited by pyridoxalphosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS) (P2X purinoceptor antagonist) but not by ADP3'5' (P2Y purinoceptor antagonist). Thus, this purinergic vasoconstriction of hMRA seems to be P2X but not P2Y purinoceptor-mediated. In precontracted hMRA all ApnA caused vasorelaxations but (in contrast to rat MRA) the potencies of the ApnA did not differ significantly from each other. The ApnA degradation products had less vasorelaxing potency than ApnA, demonstrating that the vasorelaxations can be ascribed to the ApnA themselves. Ap5A-induced vasorelaxation of hMRA could neither be inhibited with ADP3'5' nor with PPADS, which reveals a decisive difference to the rat MRA where the inhibitory profile demonstrated the importance of the P2Y purinoceptor for Ap5A-induced vasorelaxation. However, Ap4A-induced vasorelaxation in hMRA could be inhibited by ADP3'5'. These findings show that Ap4A-induced vasorelaxation in hMRA is due to P2Y purinoceptor activation, that Ap5A evokes vasorelaxation in hMRA via another mechanism than Ap4A, and that data derived from the animal model cannot be simply transferred to human conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据