4.7 Article Proceedings Paper

Group 1 mGluRs modulate the pattern of non-synaptic epileptiform activity in the hippocampus

期刊

NEUROPHARMACOLOGY
卷 43, 期 2, 页码 141-146

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0028-3908(02)00095-3

关键词

CA1; low-Ca2+ bursting; dihydroxyphenylglycine; mGIuR(1); mGIuR(5); epilepsy

向作者/读者索取更多资源

The hippocampus is well known for its susceptibility to epileptic seizures, in part because of its neuronal architecture that facilitates synchronization. Although synaptic networks are important for the genesis and spread of epileptiform activity, synchronization of neuronal activity can occur when action potential-dependent chemical synaptic transmission is absent. In particular, it is possible to induce epileptiform activity by perfusing hippocampal slices with a low-Ca2+/high-K+ mediums. Using extracellular recording in area CAl we have characterized the effects of metabotropic glutamate receptor (mGluR) activation on this non-synaptic bursting activity. Under control conditions, bursting occurred at intervals of 14-86 s with each burst comprising a long (up to 44 s) negative-going field potential of 2 to 13 mV superimposed upon which was sustained firing of population spikes. Activation of group I mGluRs by (S)-3,5-dihydroxyphenylglycine (DHPG) (25 muM) caused a dramatic increase in burst frequency (up to fivefold), which was accompanied by a decrease in the duration and amplitude of bursts. The selective mGluR(1) antagonist 2-methyl-4-carboxyphenylglycine (LY367385) and the selective mGluR(5) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) both restricted the increase in burst frequency induced by DHPG. However, only LY367385 inhibited the decrease in burst duration and amplitude. Combined application of both antagonists prevented all DHPG-induced changes in bursting activity. These data provide evidence for a role of both mGluR(1) and mGluR(5) subtypes in changing the frequency of non-synaptic bursting, with mGluR(1) alone causing alterations in burst duration and amplitude. These effects are likely to contribute to the group I mGluR-induced changes in synaptic epileptic activity that are already well documented. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据