4.6 Review

The role of galactic winds on molecular gas emission from galaxy mergers

期刊

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
卷 176, 期 2, 页码 331-354

出版社

IOP PUBLISHING LTD
DOI: 10.1086/533500

关键词

galaxies : active; galaxies : starburst; ISM : jets and outflows; line : profiles; quasars : general

向作者/读者索取更多资源

Galactic winds from starbursts and active galactic nuclei (AGNs) are thought to play an important role in driving galaxies along the starburst-AGN sequence. Here, we assess the impact of these winds on the CO emission from galaxy mergers and, in particular, search for signatures of starburst and AGN-feedback-driven winds in the simulated CO morphologies and emission-line profiles. We do so by combining a three-dimensional non-LTE molecular line radiative transfer code with smoothed particle hydrodynamic (SPH) simulations of galaxy mergers that include prescriptions for star formation, black hole growth, a multiphase interstellar medium (ISM), and the winds associated with star formation and black hole growth. Our main results are (1) Galactic winds can drive outflows of masses similar to 10(8)-10(9) M-circle dot which may be imaged via CO emission-line mapping. (2) AGN-feedback-driven winds are able to drive detectable CO outflows for longer periods of time than starburst-driven winds owing to the greater amount of energy imparted to the ISM by AGN feedback compared to star formation. (3) Galactic winds can control the spatial extent of the CO emission in postmerger galaxies, and may serve as a physical motivation for the subkiloparsec scale CO emission radii observed in local advanced mergers. (4) Secondary emission peaks at velocities greater than the circular velocity are seen in the CO emission lines in all models, regardless of the associated wind model. In models with winds, however, these high-velocity peaks are seen to preferentially correspond to outflowing gas entrained in winds, which is not the case in the model without winds. The high-velocity peaks seen in models without winds are typically confined to velocity offsets (from the systemic) less than or similar to 1.7 times the circular velocity, whereas the models with AGN-feedback-driven winds can drive high-velocity peaks to similar to 2.5 times the circular velocity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据