4.6 Article

Barrier-controlled carrier transport in microcrystalline semiconducting materials: Description within a unified model

期刊

JOURNAL OF APPLIED PHYSICS
卷 92, 期 3, 页码 1411-1418

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1488246

关键词

-

向作者/读者索取更多资源

A recently developed model that unifies the ballistic and diffusive transport mechanisms is applied to the carrier transport across potential barriers at grain boundaries in microcrystalline semiconducting materials. In the unified model, the conductance depends on the detailed structure of the band edge profile and in a nonlinear way on the carrier mean free path. Equilibrium band edge profiles are calculated within the trapping model for samples made up of a linear chain of identical grains. Quantum corrections allowing for tunneling are included in the calculation of electron mobilities. The dependence of the mobilities on carrier mean free path, grain length, number of grains, and temperature is examined, and appreciable departures from the results of the thermionic-field-emission model are found. Specifically, the unified model is applied in an analysis of Hall mobility data for n-type muc-Si thin films in the range of thermally activated transport. Owing mainly to the effect of tunneling, potential barrier heights derived from the data are substantially larger than the activation energies of the Hall mobilities. The specific features of the unified model, however, cannot be resolved within the rather large uncertainties of the analysis. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据