4.7 Article

An individual welfare maximization algorithm for electricity markets

期刊

IEEE TRANSACTIONS ON POWER SYSTEMS
卷 17, 期 3, 页码 590-596

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRS.2002.800899

关键词

economics; markets; Nash equilibrium; optimal power flow (OPF); power systems; welfare maximization

向作者/读者索取更多资源

An algorithm that allows a market participant to maximize its individual welfare in electricity spot markets is presented. The use of the algorithm in determining market equilibrium points, called Nash equilibria, is demonstrated. The start of the algorithm is a spot market model that uses the optimal power flow (OPF), with a full representation of the transmission system and inclusion of consumer bidding. The algorithm utilizes price and dispatch sensitivities, available from the Hessian matrix and gradient of the OPF, to help determine an optimal change in an individual's bid. The algorithm is shown to be successful in determining local welfare maxima, and the prospects for scaling the algorithm up to realistically sized systems are very good. Nash equilibria are investigated assuming all participants attempt to maximize their individual welfare. This is done by iteratively solving the individual welfare maximization algorithm until all individuals stop modifying their bids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据