4.7 Article

Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells

期刊

PLANT AND CELL PHYSIOLOGY
卷 43, 期 8, 页码 903-910

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcf108

关键词

mangrove; Bruguiera sexangula; salt-tolerance

向作者/读者索取更多资源

To analyze the mechanisms of salt tolerance in the mangrove plant, Bruguiera sexangula, functional screening for cDNAs encoding proteins essential for salt tolerance was performed using Escherichia coli as the host organism. A transformant expressing a protein homologous to Lycopersicon (tomato) allene oxide cyclase (AOC) displayed enhanced salt tolerance. However, this unusual trait is not conferred by Lycopersicon AOC or its Arabidopsis homolog. Analysis of the functional region revealed a sequence of only 70 amino acids, which contains an unusual sequence that is essential for the salt-tolerant phenotype. On the basis of its unusual function, the mangrove AOC homolog is designated mangrin. Furthermore, expression of mangrin driven by the GAL1 promoter and the 35S cauliflower mosaic virus (CaMV) promoter in Saccharomyces cerevisiae and tobacco cell lines, respectively, also gave rise to enhanced salt tolerance. Mangrin transcripts increased in cultured B. sexangula cells in response to salt stress. We propose that mangrin plays an important role in the salt-tolerance mechanism of B. sexangula, and that the biosynthesis of mangrin might be an effective means of enhancing salt tolerance in higher plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据