4.7 Article

Inhibition of mitochondrial permeability transition and release of cytochrome c by anti-apoptotic nucleoside analogues

期刊

BIOCHEMICAL PHARMACOLOGY
卷 64, 期 3, 页码 441-449

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0006-2952(02)01181-4

关键词

apoptosis; autophagy; 3-methyladenine; cytosine arabinoside; olomoucine; mitochondria; cytochrome c release

向作者/读者索取更多资源

We have investigated whether nucleoside drugs that induce or protect neurones against apoptosis might directly activate or inhibit mitochondrial permeability transition (mPT) since opening of the mPT pore can promote release of cytochrome c and apoptosis, while its closure can prevent these changes. We found that the pro-apoptotic pyrimidine analogues cytosine beta-D-arabinofuranoside and cytosine beta-D-arabinofuranoside 5'-triphosphate, which activated apoptosis in post-mitotic neurones without incorporation into nuclear DNA, induced rapid calcium-dependent mitochondrial swelling of isolated liver mitochondria in a dose-dependent manner. Induction of up to 50 and 80%, respectively, of maximal swelling induced by high calcium was obtained at 1 mM concentrations, which also promoted a 17-fold increase in the release of cytochrome c. Both activities were inhibited by cyclosporine A to unstimulated levels; dCTP had no effect. In contrast, the anti-apoptotic adenine analogues, 3-methyladenine (3-MA) and olomoucine (but not iso-olomoucine), inhibited swelling induced by calcium or phenylarsine oxide in a dose-dependent manner at concentrations that protect neurones from apoptosis. Both compounds also inhibited the release of cytochrome c (by 82%, 20 mM 3-MA and 95%, 0.9 mM olomoucine), similar to the inhibition obtained with cyclosporine A, and 5 mM ADP or ATP. Similar inhibitory effects with olomoucine and 3-MA were found in isolated heart mitochondria. These studies identify the mPT as an important target for hitherto untested pro- and anti-apoptotic nucleoside-based drugs and suggest that screening for mPT modulation is an important component in the validation of a drug's mechanism of action. (C) 2002 Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据