4.6 Article

Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 32, 页码 29231-29241

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M202770200

关键词

-

资金

  1. NCI NIH HHS [R01CA39077] Funding Source: Medline
  2. NHLBI NIH HHS [R01HL33711] Funding Source: Medline

向作者/读者索取更多资源

The invasion of migratory cells through connective tissues involves metallo- and serine types of cell surface proteases. We show that formation of a novel protease complex, consisting of the membrane-bound prolyl peptidases seprase and dipeptidyl peptidase IV (DPPIV), at invadopodia of migratory fibroblasts is a prerequisite for cell invasion and migration on a collagenous matrix. Seprase and DPPIV form a complex on the cell surface that elicits both gelatin binding and gelatinase activities localized at invadopodia of cells migrating on collagenous fibers. The protease complex participates in the binding to gelatin and localized gelatin degradation, cellular migration, and monolayer wound closure. Serine protease inhibitors can block the gelatinase activity and the localized gelatin degradation by cells. Antibodies to the gelatin-binding domain of DPPIV reduce the cellular abilities of the proteases to degrade gelatin but do not affect cellular adhesion or spreading on type I collagen. Furthermore, expression of the seprase-DPPIV complex is restricted to migratory cells involved in wound closure in vitro and in connective tissue cells during closure of gingival wounds but not in differentiated tissue cells. Thus, we have identified cell surface proteolytic activities, which are non-metalloproteases, seprase and DPPIV, that are responsible for the tissue-invasive phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据