4.6 Article

Calpain and mitochondria in ischemia/reperfusion injury

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 32, 页码 29181-29186

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M204951200

关键词

-

资金

  1. NHLBI NIH HHS [HL 60590] Funding Source: Medline
  2. NINDS NIH HHS [NS 36821] Funding Source: Medline

向作者/读者索取更多资源

Studies of ischemia/reperfusion (I/R) injury and preconditioning have shown that ion homeostasis, particularly calcium homeostasis, is critical to limiting tissue damage. However, the relationship between ion homeostasis and specific cell death pathways has not been investigated in the context of I/R. Previously we reported that calpain cleaved Bid in the absence of detectable caspase activation (1). In this study, we have shown that an inhibitor of the sodium/hydrogen exchanger prevented calpain activation after LIR. Calpain inhibitors prevented cleavage of Bid as well as the downstream indices of cell death, including DNA strand breaks, creatine kinase (CK) release, and infarction measured by triphenyl tetrazolium chloride (TTC) staining. In contrast, the broad spectrum caspase inhibitor IDN6734 was not protective in this model. To ascertain whether mitochondrial dysfunction downstream of these events was a required step, we utilized a peptide corresponding to residues 4-23 of Bcl-x(L) conjugated to the protein transduction domain of HIV TAT (TAT-BH4), which has been shown to protect mitochondria against Ca2+-induced DeltaPsi(m) loss (2). TAT-BH4 attenuated CK release and loss of TTC staining, demonstrating the role of mitochondria and a pro-apoptotic Bcl-2 family member in the process leading to cell death. We propose the following pathway. (i) Reperfusion results in sodium influx followed by calcium accumulation. (ii) This leads to calpain activation, which in turn leads to Bid cleavage. (iii) Bid targets the mitochondria, causing dysfunction and release of pro-apoptotic factors, resulting in DNA fragmentation and death of the cell. Ischemia/reperfusion initiates a cell death pathway that is independent of caspases but requires calpain and mitochondrial dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据