4.7 Article

Dust in the photospheric environment: Unified cloudy models of M, L, and T dwarfs

期刊

ASTROPHYSICAL JOURNAL
卷 575, 期 1, 页码 264-290

出版社

IOP PUBLISHING LTD
DOI: 10.1086/341262

关键词

molecular processes; stars : atmospheres; stars : fundamental parameters; stars : late-type; stars : low-mass, brown dwarfs

向作者/读者索取更多资源

We report an attempt to construct unified cloudy models of M, L, and T dwarfs. For this purpose, we first discuss opacities as well as thermochemical properties of the cool and dense matter. Below about 2000 K, refractory material condenses, and dust will play a major role as a source of opacity. Then a major problem in modeling the photospheres of very cool dwarfs is how to treat dust and, especially, how dust could be sustained in the static photosphere for a long time. Under the high density of the photospheres of cool dwarfs, dust forms easily at the condensation temperature, T-cond, but the dust will soon grow larger than its critical radius r(cr) (at which the Gibbs free energy of condensation attains the maximum) at the critical temperature T-cr. Such large dust grains with r(gr)greater than or similar tor(cr) will soon segregate from the gas and precipitate below the photosphere. For this reason, dust exists effectively only in the limited region of T(cr)less than or similar toTless than or similar toT(cond) in the photosphere, and this means that a dust cloud is formed deep in the photosphere rather than in the cooler surface region. With this simple model of the dust cloud, we show that the nongray model photosphere in radiative-convective equilibrium can be extended to T-eff values as low as 800 K. Since T-cond approximate to2000 K for the first condensates such as corundum and iron, the dust cloud is rather warm and necessarily located deeper in the photosphere (tau>1) for the cooler objects ( note that Tapproximate toT(eff) at tauapproximate to1). This explains why dust apparently shows little observable effect in T dwarfs. For warmer objects, the dust cloud, which is always formed at the same temperature range of T(cr)less than or similar toTless than or similar toT(cond), can be located nearer the surface (tau<1), and, for this reason, L dwarfs appear to be dusty. We show that the recently proposed spectral classification of L and T dwarfs can consistently be interpreted by a single grid of our unified cloudy models with the thin dust cloud deep in the photosphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据