4.6 Article

THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY

期刊

ASTROPHYSICAL JOURNAL LETTERS
卷 759, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/759/1/L7

关键词

cosmology: observations; galaxies: statistics; large-scale structure of universe; methods: numerical; methods: observational

资金

  1. Kyung Hee University [KHU-20100179]
  2. Alfred P. Sloan Foundation
  3. National Science Foundation
  4. US Department of Energy
  5. National Aeronautics and Space Administration
  6. Japanese Monbukagakusho
  7. Max Planck Society
  8. Higher Education Funding Council for England
  9. Ministry of Education, Science & Technology (MoST), Republic of Korea [PG016902] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  10. National Research Foundation of Korea [00000005] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Large galaxy redshift surveys have long been used to constrain cosmological models and structure formation scenarios. In particular, the largest structures discovered observationally are thought to carry critical information on the amplitude of large-scale density fluctuations or homogeneity of the universe, and have often challenged the standard cosmological framework. The Sloan Great Wall (SGW) recently found in the Sloan Digital Sky Survey (SDSS) region casts doubt on the concordance cosmological model with a cosmological constant (i.e., the flat Lambda CDM model). Here we show that the existence of the SGW is perfectly consistent with the Lambda CDM model, a result that only our very large cosmological N-body simulation (the Horizon Run 2, HR2) could supply. In addition, we report on the discovery of a void complex in the SDSS much larger than the SGW, and show that such size of the largest void is also predicted in the Lambda CDM paradigm. Our results demonstrate that an initially homogeneous isotropic universe with primordial Gaussian random phase density fluctuations growing in accordance with the general relativity can explain the richness and size of the observed large-scale structures in the SDSS. Using the HR2 simulation we predict that a future galaxy redshift survey about four times deeper or with 3mag fainter limit than the SDSS should reveal a largest structure of bright galaxies about twice as big as the SGW.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据