4.8 Article

Self-assembled nanoparticle probes for recognition and detection of biomolecules

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 124, 期 32, 页码 9606-9612

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja025814p

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM58173, R01 GM058173, R01 GM060562] Funding Source: Medline

向作者/读者索取更多资源

Colloidal gold nanocrystals have been used to develop a new class of nanobiosensors that is able to recognize and detect specific DNA sequences and single-base mutations in a homogeneous format. At the core of this biosensor is a 2.5-nm gold nanoparticle that functions as both a nano-scaffold and a nano-quencher (efficient energy acceptor). Attached to this core are oligonucleotide molecules labeled with a thiol group at one end and a fluorophore at the other. This hybrid bio/inorganic construct is found to spontaneously assemble into a constrained arch-like conformation on the particle surface. Binding of target molecules results in a conformational change, which restores the fluorescence of the quenched fluorophore. Unlike conventional molecular beacons with a stem-and-loop structure, the nanoparticle probes do not require a stem, and their background fluorescence increases little with temperature. In comparison with the organic quencher Dabcyl (4,4'-dimethylaminophenyl azo benzoic acid), metal nanoparticles have unique structural and optical properties for new applications in biosensing and molecular engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据