4.5 Article

Pickup ions near Mars associated with escaping oxygen atoms

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2001JA000125

关键词

solar wind interaction; pickup ions; oxygen corona; Mars; ion acceleration

向作者/读者索取更多资源

[1] Ions produced by ionization of Martian neutral atoms or molecules and picked up by the solar wind flow are expected to be an important ingredient of the Martian plasma environment. Significant fluxes of energetic (55-72 keV) oxygen ions were recorded in the wake of Mars and near the bow shock by the solar low-energy detector (SLED) charged particle detector onboard the Phobos 2 spacecraft. Also, copious fluxes of oxygen ions in the ranges 0.5-25 and 0.01-6 keV/q were detected in the Martian wake by the Automatic Space Plasma Experiment with Rotating Analyzer (ASPERA) instrument on Phobos 2. This paper provides a quantitative analysis of the SLED energetic ion data using a test particle model in which one million ion trajectories were numerically calculated. These trajectories were used to determine the ion flux as a function of energy in the vicinity of Mars for conditions appropriate for Circular Orbit 42 of Phobos 2. The electric and magnetic fields required by the test particle model were taken from a three-dimensional magnetohydrodynamic (MHD) model of the solar wind interaction with Mars. The ions were started at rest with a probability proportional to the density expected for exospheric hot oxygen. The test particle model supports the identification of the ions observed in channel 1 of the SLED instrument as pick-up oxygen ions that are created by the ionization of oxygen atoms in the distant part of the exosphere. The flux of 55-72 keV oxygen ions near the orbit of the Phobos 2 should be proportional to the oxygen density at radial distances from Mars of about 10 R-m (Martian radii) and hence proportional to the direct oxygen escape rate from Mars that is an important part of the overall oxygen loss rate at Mars. The modeled energetic oxygen fluxes also exhibit a spin modulation as did the SLED fluxes during Circular Orbit 42.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据