4.6 Article

THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED

期刊

ASTROPHYSICAL JOURNAL LETTERS
卷 736, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/736/2/L29

关键词

planetary systems

资金

  1. NSF [AST-1010017]
  2. Alfred P. Sloan Research Fellowship
  3. Direct For Mathematical & Physical Scien [1010017] Funding Source: National Science Foundation
  4. Division Of Astronomical Sciences [1010017] Funding Source: National Science Foundation

向作者/读者索取更多资源

We investigate a population of transiting planets that receive relatively modest stellar insolation, indicating equilibrium temperatures <1000 K, and for which the heating mechanism that inflates hot Jupiters does not appear to be significantly active. We use structural evolution models to infer the amount of heavy elements within each of these planets. There is a correlation between the stellar metallicity and the mass of heavy elements in its transiting planet(s). It appears that all giant planets possess a minimum of similar to 10-15 Earth masses of heavy elements, with planets around metal-rich stars having larger heavy-element masses. There is also an inverse relationship between the mass of the planet and the metal enrichment (Z(pl)/Z(star)), which appears to have little dependency on the metallicity of the star. Saturn-and Jupiter-like enrichments above solar composition are a hallmark of all the gas giants in the sample, even planets of several Jupiter masses. These relationships provide an important constraint on planet formation and suggest large amounts of heavy elements within planetary H/He envelopes. We suggest that the observed correlation can soon also be applied to inflated planets, such that the interior heavy-element abundance of these planets could be estimated, yielding better constraints on their interior energy sources. We point to future directions for planetary population synthesis models and suggest future correlations. This appears to be the first evidence that extrasolar giant planets, as a class, are enhanced in heavy elements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据