4.7 Article

Classical mapping for second-order quantized Hamiltonian dynamics

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 117, 期 7, 页码 2995-3002

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1493776

关键词

-

向作者/读者索取更多资源

Second-order quantized Hamiltonian dynamics (QHD-2) is mapped onto classical mechanics by doubling the dimensionality. The mapping establishes the classical canonical structure for QHD-2 and permits its application to problems showing zero-point energy and tunneling via a standard molecular dynamics simulation, without modifying the simulation algorithms, by introducing new potentials for the extra variables. The mapping is applied to the family of Gaussian approximations, including frozen and thawed Gaussians, which are special cases of QHD-2. The mapping simplifies numerous applications of Gaussians to simulations of spectral intensities and line shapes, nonadiabatic and other quantum phenomena. The analysis shows that frozen Gaussians conserve the total energy, while thawed Gaussians do not, unless an additional term is introduced to the equation of motion for the thawed Gaussian momentum. The classical mapping of QHD-2 is illustrated by tunneling and zero-point energy effects in the harmonic oscillator, cubic and double-well potential, and the Morse oscillator representing the O-H stretch of the SPC-F water model. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据