4.6 Article

THE MASSIVE PULSAR PSR J1614-2230: LINKING QUANTUM CHROMODYNAMICS, GAMMA-RAY BURSTS, AND GRAVITATIONAL WAVE ASTRONOMY

期刊

ASTROPHYSICAL JOURNAL LETTERS
卷 724, 期 2, 页码 L199-L202

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/724/2/L199

关键词

gamma-ray burst: general; pulsars: individual (PSR J1614-2230); stars: neutron

资金

  1. NASA [NNX10AE89G]
  2. NSF [AST 07-08640, NSF 0746549]
  3. Chandra Theory grant [TMO-11003X]
  4. NASA [NNX10AE89G, 134544] Funding Source: Federal RePORTER
  5. Office Of Internatl Science &Engineering
  6. Office Of The Director [0968296] Funding Source: National Science Foundation

向作者/读者索取更多资源

The recent measurement of the Shapiro delay in the radio pulsar PSR J1614-2230 yielded amass of 1.97 +/- 0.04 M-circle dot, making it the most massive pulsar known to date. Its mass is high enough that, even without an accompanying measurement of the stellar radius, it has a strong impact on our understanding of nuclear matter, gamma-ray bursts (GRBs), and the generation of gravitational waves from coalescing neutron stars. This single high-mass value indicates that a transition to quark matter in neutron-star cores can occur at densities comparable to the nuclear saturation density only if the quarks are strongly interacting and are color superconducting. We further show that a high maximum neutron-star mass is required if short-duration GRBs are powered by coalescing neutron stars and, therefore, this mechanism becomes viable in the light of the recent measurement. Finally, we argue that the low-frequency (<= 500 Hz) gravitational waves emitted during the final stages of neutron-star coalescence encode the properties of the equation of state because neutron stars consistent with this measurement cannot be centrally condensed. This will facilitate the measurement of the neutron star equation of state with Advanced LIGO/Virgo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据