4.7 Article

Mesoscale modeling of bimodal elastomer networks: Constitutive and optical theories and results

期刊

MACROMOLECULES
卷 35, 期 18, 页码 7100-7109

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma000547y

关键词

-

向作者/读者索取更多资源

A new micromechanics-based constitutive model for the nonlinear large deformation stress and birefringence responses of bimodal elastomer networks is developed. The elastic constitutive law is derived using the analytical rubrics of composite mechanics, which results in a straightforward implementation in contrast to previous bimodal theories. The model requires fewer adjustable parameters than most existing theories and, given a single set of parameters, is predictive over a wide range of bimodal compositions. Nonaffine deformation of short vs long chains is achieved with the model by satisfying equilibrium, compatibility, and the chain constitutive laws during deformation. The model is shown to agree well with data in the literature for both tensile stress and tensile stress-optic tests on specimens of poly(dimethylsiloxane) (PDMS) cross-linked from linear starting oligomers of various molecular weights. Several mixtures of eight different molecular weight combinations were examined. The model is also examined against our own data on PDMS in uniaxial compression and was shown to also predict that series of data well. Deviations of the model from the literature data are seen in bimodal mixtures which form microstructures that are believed to deviate from the proposed microcomposite arrangement. The model provides a framework for generating a constitutive theory capable of incorporating microstructural changes based solely on changes in composition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据