4.5 Article

A new technique to prevent self-ligation of DNA

期刊

JOURNAL OF BIOTECHNOLOGY
卷 97, 期 3, 页码 233-242

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-1656(02)00107-4

关键词

self-ligation; 2 ',3 '-dideoxyribose; 3 '-hydroxyl residues; gene cloning; adaptor ligation

向作者/读者索取更多资源

The most widely used technique for preventing self-ligation (self-circularization and concatenation) of DNA is dephosphorylation of the 5'-end, which stops DNA ligase from catalyzing the formation of phosphodiester bonds between the 3'-hydroxyl and 5'-phosphate residues at the DNA ends. The 5'-dephosphorylation technique cannot be applied to both DNA species to be ligated and thus, the untreated DNA species remains capable of self-ligation. To prevent this self-ligation, we replaced the 2'-deoxyribose at the 3'-end of the untreated DNA species with a 2',3'-dideoxyribose. Self-ligation was prevented at the replaced 3'-end, while the 5'-phosphate remaining at the 5'-end permitted ligation with the 3'-hydroxyl end of the 5'-dephosphorylated DNA strand. We successfully applied this 3'-replacement technique to gene cloning, adapter-mediated polymerase chain reaction and messenger RNA fingerprinting. The 3'-replacement technique is simple and not restricted by sequence or conformation of the DNA termini and is thus applicable to a wide variety of methods involving ligation. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据