4.6 Article

Mixed-mode reversed-phase and ion-exchange separations of cationic analytes on polybutadiene-coated zirconia

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 968, 期 1-2, 页码 17-29

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0021-9673(02)00754-9

关键词

mixed-mode retention; silanophilic interactions; lewis acid-base interactions; stationary phases, LC; mobile phase composition; cationic drugs; polybutadiene; zirconia

向作者/读者索取更多资源

The retention and selectivity of the chromatographic separation of basic (cationic) analytes on a polybutadiene-coated zirconia (PBD-ZrO2) stationary phase have been studied in greater detail than in previous studies. These separations are strongly influenced by the chemistry of the accessible surface of zirconia. In the presence of buffers which contain hard Lewis bases (e.g., phosphate, fluoride, carboxylic acids) zirconia's surface becomes negatively charged due to adsorption of the buffer anion at the hard Lewis acid sites. Consequently, under most conditions (e.g., neutral pH), cationic analytes undergo both hydrophobic and cation-exchange interactions. This mixed-mode retention process generally leads to greater retention factors for cations relative to those on silica-based reversed phases despite the lower surface areas of the zirconia phase, but, more importantly, adsorption of hard Lewis bases can be used to control the chromatographic selectivity for cationic analytes on these zirconia-based stationary phases. In contrast to our prior work, here we show that when mixed-mode retention takes place, both retention and selectivity are easily adjusted by changing the type of hard Lewis base buffer anion, the type of buffer counter-ion (e.g., sodium, potassium, ammonium), the pH, and the ionic strength of the eluent as well as the type and amount of organic modifier. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据