4.6 Article

Functional expression of phosphagen kinase systems confers resistance to transient stresses in Saccharomyces cerevisiae by buffering the ATP pool

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 35, 页码 31303-31309

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M204052200

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM55837] Funding Source: Medline

向作者/读者索取更多资源

Phosphagen kinase systems provide different advantages to tissues with high and fluctuating energy demands, in particular an efficient energy buffering system. In this study we show for the first time functional expression of two phosphagen kinase systems in Saccharomyces cerevisiae, which does not normally contain such systems. First, to establish the creatine kinase system, in addition to overexpressing creatine kinase isoenzymes, we had to install the biosynthesis pathway of creatine by co-overexpression of L-arginine:glycine amidinotransferase and guanidinoacetate methyltransferase. Although we could achieve considerable creatine kinase activity, together with more than 3 mm intracellular creatine, this was not sufficient to confer an obvious advantage to the yeast under the specific stress conditions examined here. Second, using arginine kinase, we successfully installed an intracellular phosphagen pool of about 5 mm phosphoarginine. Such arginine kinase-expressing yeast showed improved resistance under two stress challenges that drain cellular energy, which were transient pH reduction and starvation. Although transient starvation led to 50% reduced intracellular ATP concentrations in wild-type yeast, arginine kinase overexpression stabilized the ATP pool at the pre-stress level. Thus, our results demonstrate that temporal energy buffering is an intrinsic property of phosphagen kinases that can be transferred to phyloge-netically very distant organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据