4.6 Article

Homeostatic maintenance of neuronal excitability by burst discharges in vivo

期刊

CEREBRAL CORTEX
卷 12, 期 9, 页码 893-899

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/12.9.893

关键词

-

资金

  1. NIMH NIH HHS [MH54671] Funding Source: Medline
  2. NINDS NIH HHS [NS34994] Funding Source: Medline

向作者/读者索取更多资源

Information in neuronal networks is thought to be represented by the rate of discharge and the temporal relationship between the discharging neurons. The discharge frequency of neurons is affected by their afferents and intrinsic properties, and shows great individual variability. The temporal coordination of neurons is greatly facilitated by network oscillations. In the hippocampus, population synchrony fluctuates during theta and gamma oscillations (10-100 ms scale) and can increase almost 10-fold during sharp wave bursts. Despite these large changes in excitability in the sub-second scale, longer-term (minute-scale) firing rates of individual neurons are relatively constant in an unchanging environment. As a result, mean hippocampal output remains stable over time. To understand the mechanisms responsible for this homeostasis, we address the following issues: (i) Can firing rates of single cells be modified? (ii) Once modified, what mechanism(s) can maintain the changes? We show that firing rates of hippocampal pyramidal cells can be altered in a novel environment and by Hebbian pairing of physiological input patterns with postsynaptic burst discharge. We also illustrate a competition between single spikes and the occurrence of spike bursts. Since spike-inducing (suprathreshold) inputs decrease the ability of strong ('teaching') inputs to induce a burst discharge, we propose that the single spike versus burst competition presents a homeostatic regulatory mechanism to maintain synaptic strength and, consequently, firing rate in pyramidal cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据