4.6 Article

Magnetization orientation dependence of the quasiparticle spectrum and hysteresis in ferromagnetic metal nanoparticles

期刊

PHYSICAL REVIEW B
卷 66, 期 9, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.66.094430

关键词

-

向作者/读者索取更多资源

We use a microscopic Slater-Koster tight-binding model with short-range exchange and atomic spin-orbit interactions that realistically captures generic features of ferromagnetic metal nanoparticles to address the mesoscopic physics of magnetocrystalline anisotropy and hysteresis in nanoparticle-quasiparticle excitation spectra. Our analysis is based on qualitative arguments supported by self-consistent Hartree-Fock calculations for nanoparticles containing up to 260 atoms. Calculations of the total energy as a function of magnetization direction demonstrate that the magnetic anisotropy per atom fluctuates by several percent when the number of electrons in the particle changes by 1, even for the largest particles we consider. Contributions of individual orbitals to the magnetic anisotropy are characterized by a broad distribution with a mean more than two orders of magnitude smaller than its variance and with no detectable correlations between anisotropy contribution and quasiparticle energy. We find that the discrete quasiparticle excitation spectrum of a nanoparticle displays a complex nonmonotonic dependence on an external magnetic field, with abrupt jumps when the magnetization direction is reversed by the field, explaining recent spectroscopic studies of magnetic nanoparticles. Our results suggest the existence of a broad crossover from a weak spin-orbit coupling to a strong spin-orbit coupling regime, occurring over the range from approximately 200- to 1000-atom nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据