4.5 Article

Insulin induces heterologous desensitization of G protein-coupled receptor and insulin-like growth factor I signaling by downregulating β-arrestin-1

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 22, 期 17, 页码 6272-6285

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.22.17.6272-6285.2002

关键词

-

资金

  1. NIDDK NIH HHS [R01 DK033651, R37 DK033651, DK 33651] Funding Source: Medline

向作者/读者索取更多资源

beta-Arrestin-1 mediates agonist-dependent desensitization and internalization of G protein-coupled receptors (GPCRs) and is also essential for GPCR mitogenic signaling. In addition, insulin-like growth factor I receptor (IGF-IR) endocytosis is facilitated by beta-arrestin-1, and internalization is necessary for IGF-I-stimulated mitogen-activated protein (MAP) kinase activation. Here, we report that treatment of cells for 12 h with insulin (100 ng/ml) induces an similar to50% decrease in cellular beta-arrestin-1 content due to ubiquitination of beta-arrestin-1 and proteosome-mediated degradation. This insulin-induced decrease in beta-arrestin-1 content was blocked by inhibition of phosphatidylinositol-3 kinase (PI-3 kinase) and MEK with wortmannin and PD98059, respectively. We also found a marked decrease in the association of beta-arrestin-1 with the IGF-IR and a 55% inhibition of IGF-I-stimulated MAP kinase phosphorylation. In insulin-treated, beta-arrestin-1-downregulated cells, there was complete inhibition of lysophosphatidic acid (LPA) or isoproterenol (ISO)-stimulated MAP kinase phosphorylation. This was associated with a decrease in beta-arrestin-1 association with the beta(2)-AR as well as a decrease in beta-arrestin-1-Src and Src-beta(2)-AR association. Ectopic expression of wild-type beta-arrestin-1 in insulin-treated cells in which endogenous beta-arrestin-1 bad been downregulated rescued IGF-I- and LPA-stimulated MAP kinase phosphorylation. In conclusion, we found the following. (i) Chronic insulin treatment leads to enhanced beta-arrestin-1 degradation. (ii) This downregulation of endogenous beta-arrestin-1 is associated with decreased IGF-I-, LPA-, and ISO-mediated MAP kinase signaling, which can be rescued by ectopic expression of wild-type beta-arrestin-1. (iii) Finally, these results describe a novel mechanism for heterologous desensitization, whereby insulin treatment can impair GPCR signaling, and highlight the importance of beta-arrestin-1 as a target molecule for this desensitization mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据