4.8 Article

Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri

期刊

PLANT PHYSIOLOGY
卷 130, 期 1, 页码 466-476

出版社

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.006460

关键词

-

资金

  1. NIGMS NIH HHS [5 T32 GM07544, T32 GM007544] Funding Source: Medline

向作者/读者索取更多资源

A cDNA encoding a protein with 456 amino acids whose sequence shows considerable similarity to plant acyltransferases was identified among 750 Clarkia breweri flower expressed sequence tags. The cDNA was expressed in Escherichia coli, and the protein produced was shown to encode the enzyme benzoyl-coenzyme A (CoA):benzyl alcohol benzoyl transferase (BEBT). BEBT catalyzes the formation of benzylbenzoate, a minor constituent of the C. breweri floral aroma, but it also has activity with a number of other alcohols and acyl CoAs. The BEBT gene is expressed in different parts of the flowers with maximal RNA transcript levels in the stigma, and no expression was observed in the leaves under normal conditions. However, BEBT expression was induced in damaged leaves, reaching a maximum 6 h after damage occurred. We also show here that a closely related tobacco (Nicotiana tabacum) gene previously shown to be induced in leaves after being challenged by phytopathogenic bacteria also has BEBT activity, whereas the most similar protein to BEBT in the Arabidopsis proteome does not use benzoyl CoA as a substrate and instead can use acetyl CoA to catalyze the formation of cis-3-hexen-1-yl acetate, a green-leaf volatile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据