4.7 Article

FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES

期刊

ASTROPHYSICAL JOURNAL
卷 767, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/767/2/100

关键词

instrumentation: adaptive optics; instrumentation: high angular resolution; instrumentation: miscellaneous; methods: statistical; techniques: interferometric; techniques: miscellaneous

资金

  1. National Science Foundation [AST-0804586, AST-0904839]
  2. Division Of Astronomical Sciences
  3. Direct For Mathematical & Physical Scien [0904839] Funding Source: National Science Foundation

向作者/读者索取更多资源

Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据