4.7 Article

METHODS FOR BAYESIAN POWER SPECTRUM INFERENCE WITH GALAXY SURVEYS

期刊

ASTROPHYSICAL JOURNAL
卷 779, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/779/1/15

关键词

large-scale structure of universe; methods: data analysis; methods: numerical; methods: statistical

资金

  1. Alexander von Humboldt foundation
  2. NSF [AST 07-08849, AST 09-08693]
  3. XSEDE [AST100029]
  4. National Science Foundation [PHYS-1066293]

向作者/读者索取更多资源

We derive and implement a full Bayesian large scale structure inference method aiming at precision recovery of the cosmological power spectrum from galaxy redshift surveys. Our approach improves upon previous Bayesian methods by performing a joint inference of the three-dimensional density field, the cosmological power spectrum, luminosity dependent galaxy biases, and corresponding normalizations. We account for all joint and correlated uncertainties between all inferred quantities. Classes of galaxies with different biases are treated as separate subsamples. This method therefore also allows the combined analysis of more than one galaxy survey. In particular, it solves the problem of inferring the power spectrum from galaxy surveys with non-trivial survey geometries by exploring the joint posterior distribution with efficient implementations of multiple block Markov chain and Hybrid Monte Carlo methods. Our Markov sampler achieves high statistical efficiency in low signal-to-noise regimes by using a deterministic reversible jump algorithm. This approach reduces the correlation length of the sampler by several orders of magnitude, turning the otherwise numerically unfeasible problem of joint parameter exploration into a numerically manageable task. We test our method on an artificial mock galaxy survey, emulating characteristic features of the Sloan Digital Sky Survey data release 7, such as its survey geometry and luminosity-dependent biases. These tests demonstrate the numerical feasibility of our large scale Bayesian inference frame work when the parameter space has millions of dimensions. This method reveals and correctly treats the anti-correlation between bias amplitudes and power spectrum, which are not taken into account in current approaches to power spectrum estimation, a 20% effect across large ranges in k space. In addition, this method results in constrained realizations of density fields obtained without assuming the power spectrum or bias parameters in advance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据