4.7 Article

SUPPRESSION OF DIELECTRONIC RECOMBINATION DUE TO FINITE DENSITY EFFECTS

期刊

ASTROPHYSICAL JOURNAL
卷 768, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/768/1/82

关键词

atomic data; atomic processes; plasmas

资金

  1. NASA [NNX11AF32G, 10-ATP10-0053, 10-ADAP10-0073, NNX12AH73G]
  2. NSF [1108928, 1109061]
  3. STScI [HST-AR-12125.01, GO-12560, HST-GO-12309]
  4. STFC [ST/J000892/1]
  5. NASA [19755, NNX12AH73G, 147335, NNX11AF32G] Funding Source: Federal RePORTER
  6. STFC [ST/J000892/1] Funding Source: UKRI
  7. Science and Technology Facilities Council [ST/J000892/1] Funding Source: researchfish
  8. Direct For Mathematical & Physical Scien [1108928] Funding Source: National Science Foundation
  9. Direct For Mathematical & Physical Scien
  10. Division Of Astronomical Sciences [1109061] Funding Source: National Science Foundation
  11. Division Of Astronomical Sciences [1108928] Funding Source: National Science Foundation

向作者/读者索取更多资源

We have developed a general model for determining density-dependent effective dielectronic recombination (DR) rate coefficients in order to explore finite-density effects on the ionization balance of plasmas. Our model consists of multiplying by a suppression factor those highly-accurate total zero-density DR rate coefficients which have been produced from state-of-the-art theoretical calculations and which have been benchmarked by experiment. The suppression factor is based upon earlier detailed collision-radiative calculations which were made for a wide range of ions at various densities and temperatures, but used a simplified treatment of DR. A general suppression formula is then developed as a function of isoelectronic sequence, charge, density, and temperature. These density-dependent effective DR rate coefficients are then used in the plasma simulation code Cloudy to compute ionization balance curves for both collisionally ionized and photoionized plasmas at very low (n(e) = 1 cm(-3)) and finite (n(e) = 10(10) cm(-3)) densities. We find that the denser case is significantly more ionized due to suppression of DR, warranting further studies of density effects on DR by detailed collisional-radiative calculations which utilize state-of-the-art partial DR rate coefficients. This is expected to impact the predictions of the ionization balance in denser cosmic gases such as those found in nova and supernova shells, accretion disks, and the broad emission line regions in active galactic nuclei.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据