4.7 Article

EMBEDDED PROTOSTARS IN THE DUST, ICE, AND GAS IN TIME (DIGIT) HERSCHEL KEY PROGRAM: CONTINUUM SEDs, AND AN INVENTORY OF CHARACTERISTIC FAR-INFRARED LINES FROM PACS SPECTROSCOPY

期刊

ASTROPHYSICAL JOURNAL
卷 770, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/770/2/123

关键词

circumstellar matter; stars: formation; stars: pre-main sequence; stars: winds, outflows; submillimeter: stars

资金

  1. Herschel Open Time Key Project Program
  2. NASA
  3. Junior Group Leader Fellowship from the Lundbeck Foundation
  4. Instrument Center for Danish Astrophysics
  5. Danish National Research Foundation
  6. University of Copenhagen's program of excellence
  7. Basic Science Research Program through the National Research Foundation of Korea (NRF)
  8. Ministry of Education, Science and Technology [2012-0002330, 2012-044689]
  9. Lundbeck Foundation [R52-2010-4810] Funding Source: researchfish

向作者/读者索取更多资源

We present 50-210 mu m spectral scans of 30 Class 0/I protostellar sources, obtained with Herschel-PACS, and 0.5-1000 mu m spectral energy distributions, as part of the Dust, Ice, and Gas in Time Key Program. Some sources exhibit up to 75 H2O lines ranging in excitation energy from 100 to 2000 K, 12 transitions of OH, and CO rotational lines ranging from J = 14 -> 13 up to J = 40 -> 39. [O I] is detected in all but one source in the entire sample; among the sources with detectable [O I] are two very low luminosity objects. The mean 63/145 mu m [O I] flux ratio is 17.2 +/- 9.2. The [O I] 63 mu m line correlates with L-bol, but not with the time-averaged outflow rate derived from low-J CO maps. [C II] emission is in general not local to the source. The sample L-bol increased by 1.25 (1.06) and T-bol decreased to 0.96 (0.96) of mean (median) values with the inclusion of the Herschel data. Most CO rotational diagrams are characterized by two optically thin components (< N > = ( 0.70 +/- 1.12) x 10(49) total particles). N-CO correlates strongly with L-bol, but neither T-rot nor N-CO(warm)/N-CO(hot) correlates with L-bol, suggesting that the total excited gas is related to the current source luminosity, but that the excitation is primarily determined by the physics of the interaction (e.g., UV-heating/shocks). Rotational temperatures for H2O (< T-rot > = 194 +/- 85 K) and OH (< T-rot > = 183 +/- 117 K) are generally lower than for CO, and much of the scatter in the observations about the best fit is attributed to differences in excitation conditions and optical depths among the detected lines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据