4.7 Article

ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b

期刊

ASTROPHYSICAL JOURNAL
卷 766, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/766/2/95

关键词

atmospheric effects; methods: numerical; planets and satellites: general; planets and satellites: individual (HAT-P-2b); techniques: photometric

资金

  1. NASA
  2. JPL/Caltech
  3. NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX08AX02H]
  4. Origins Program [NNX08AF27G]
  5. Division Of Astronomical Sciences
  6. Direct For Mathematical & Physical Scien [1203023] Funding Source: National Science Foundation
  7. Division Of Astronomical Sciences
  8. Direct For Mathematical & Physical Scien [1108686] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 mu m bands of the Spitzer Space Telescope. The 3.6 and 4.5 mu m data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 mu m that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 +/- 0.28, 5.84 +/- 0.39, and 4.68 +/- 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% +/- 0.0089%, 0.1162% +/- 0.0080%, and 0.1888% +/- 0.0072% in the 3.6, 4.5, and 8.0 mu m bands, respectively. Our measured secondary eclipse depths of 0.0996% +/- 0.0072%, 0.1031% +/- 0.0061%, 0.071% (+0.029%)(-0.013%), and 0.1392% +/- 0.0095% in the 3.6, 4.5, 5.8, and 8.0 mu m bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2b's atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 +/- 0.00048) and argument of periapse (omega = 188 degrees. 09 +/- 0 degrees.39) of HAT-P-2b's orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term linear trend in the radial velocity data. This trend suggests the presence of another substellar companion in the HAT-P-2 system, which could have caused HAT-P-2b to migrate inward to its present-day orbit via the Kozai mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据