4.6 Article

Quantification of the internal quantum efficiency in GaN via analysis of the heat generated by non-radiative recombination processes

期刊

JOURNAL OF APPLIED PHYSICS
卷 117, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4914413

关键词

-

向作者/读者索取更多资源

The internal quantum efficiency (IQE) in a GaN epilayer is quantified using transient lens (TL) spectroscopy and numerical simulations. TL spectroscopy can optically detect temperature and carrier changes induced in a photo-pumped GaN layer, and the observed temperature change is closely associated with non-radiative recombination processes that create heat. Then numerically solving diffusion equations, which represent the diffusion processes of the photo-generated heat and carriers, provide the spatiotemporal distributions. These distributions are subsequently converted into the refractive index distributions, which act as transient convex or concave lenses. Finally, ray-tracing simulations predict the TL signals. Comparing the experimentally obtained and simulated TL signals quantifies the generated heat and the IQE without the often-adopted assumption that non-radiative recombination processes are negligible at low temperatures. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据