4.7 Article

THE FORMATION OF IRIS DIAGNOSTICS. II. THE FORMATION OF THE Mg II h&k LINES IN THE SOLAR ATMOSPHERE

期刊

ASTROPHYSICAL JOURNAL
卷 772, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/772/2/90

关键词

radiative transfer; Sun: atmosphere; Sun: chromosphere

资金

  1. Netherlands Organization for Scientific Research (NWO)
  2. Research Council of Norway
  3. European Research Council under the European Union [291058]
  4. High End Computing Division of NASA [s1061]
  5. NASA Postdoctoral Program at Ames Research Center [NNH06CC03B]
  6. NASA [NNX08AH45G, NNX08BA99G, NNX11AN98G, NNG09FA40C]
  7. NASA [NNX08AH45G, 100249] Funding Source: Federal RePORTER

向作者/读者索取更多资源

NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h&k line formation from three-dimensional (3D) radiation-magnetohydrodynamic (RMHD) models. This paper is the second in a series where we undertake this modeling. We compute the vertically emergent h&k intensity from a snapshot of a dynamic 3D RMHD model of the solar atmosphere, and investigate which diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and k lines we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anti-correlated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the TR. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h&k lines are excellent probes of the very upper chromosphere just below the TR, a height regime that is impossible to probe with other spectral lines. They also provide decent temperature and velocity diagnostics of the middle chromosphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据