4.6 Article

Mesoscale simulation of reactive pressed energetic materials under shock loading

期刊

JOURNAL OF APPLIED PHYSICS
卷 118, 期 24, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4938581

关键词

-

资金

  1. AFOSR Computational Mathematics program
  2. AFRL-RWPC

向作者/读者索取更多资源

Shock load analysis of two different samples of pressed HMX energetic material is performed using the Eulerian compressible multimaterial code SCIMITAR3D. The numerical framework uses an image to computation approach to perform shock analysis on real microstructures of the energetic samples. Image processing algorithms are applied on SEM images of both samples to implicitly represent the microstructures using level set functions. The chemical decomposition of HMX is modeled using the Henson-Smilowitz multi-step kinetic mechanism. It is observed that microstructural characteristics play a crucial role in determining the ignition behavior of the energetic materials. For the applied shock loads and for the particular samples investigated, class III sample leads to initiation of chemical reaction and the class V sample does not ignite. It is also shown that the orientation of elongated voids with respect to incident shock load is an important factor contributing to the initiation of chemical reactions in the class III sample. This is explained by performing numerical experiments of elongated void oriented at different angles with respect to the shock load. Results show the importance of microstructural details, such as void size, distribution, and orientation for initiation. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据