4.7 Article

IS THE ACCELERATION OF ANOMALOUS COSMIC RAYS AFFECTED BY THE GEOMETRY OF THE TERMINATION SHOCK?

期刊

ASTROPHYSICAL JOURNAL
卷 778, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/778/2/122

关键词

acceleration of particles; cosmic rays; magnetic fields; plasmas; shock waves; solar wind

资金

  1. NASA [NNX10AE46G, NNX11AO64G, NNX12AH44G, NNX13-AF99G]
  2. NSF [AGS-0955700]
  3. Directorate For Geosciences
  4. Div Atmospheric & Geospace Sciences [0955700] Funding Source: National Science Foundation

向作者/读者索取更多资源

Historically, anomalous cosmic rays (ACRs) were thought to be accelerated at the solar-wind termination shock (TS) by the diffusive shock acceleration process. When Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. When the Voyager 2 crossed the TS in 2007, it produced similar results. Several possible explanations have since appeared in the literature, but we follow the suggestion that ACRs are still accelerated at the shock, only away from the Voyager crossing points. To investigate this hypothesis closer, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. We then compare the results with those obtained for a spherical TS. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary, taken to be 0.5 Me Vn(-1) (the so-called injection energy), is reached. Our results show that ACR acceleration is quite efficient on the heliotail-facing part of the TS. For small values of the perpendicular diffusion coefficient, our model yields a positive intensity gradient between the TS and about midway through the heliosheath, in agreement with the Voyager observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据