4.7 Article

EVIDENCE FOR H2 FORMATION DRIVEN DUST GRAIN ALIGNMENT IN IC 63

期刊

ASTROPHYSICAL JOURNAL
卷 775, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/775/2/84

关键词

dust, extinction; ISM: individual objects (IC 63); ISM: magnetic fields; polarization

资金

  1. NASA
  2. NSF
  3. W.M. Keck Foundation
  4. Alfred P. Sloan Foundation
  5. National Science Foundation
  6. U.S. Department of Energy
  7. National Aeronautics and Space Administration
  8. Japanese Monbukagakusho
  9. Max Planck Society
  10. Higher Education Funding Council for England
  11. NSF [AST-1109469, AST 06-07500, 09-07790]
  12. Gemini Observatory
  13. Direct For Mathematical & Physical Scien
  14. Division Of Astronomical Sciences [0907790, 1109295] Funding Source: National Science Foundation
  15. Direct For Mathematical & Physical Scien
  16. Division Of Physics [0821899] Funding Source: National Science Foundation

向作者/读者索取更多资源

In the interstellar medium (ISM), molecular hydrogen is expected to form almost exclusively on the surfaces of dust grains. Due to that molecule's large formation energy (-4.5 eV), several dynamical effects are likely associated with the process, including the alignment of asymmetric dust grains with the ambient magnetic field. Such aligned dust grains are, in turn, believed to cause the broadband optical/infrared polarization observed in the ISM. Here, we present the first observational evidence for grain alignment driven by H-2 formation, by showing that the polarization of the light from stars behind the reflection nebula IC 63 appears to correlate with the intensity of H-2 fluorescence. While our results strongly suggest a role for Purcell rockets in grain alignment, additional observations are needed to conclusively confirm their role. By showing a direct connection between H-2 formation and a probe of the dust characteristics, these results also provide one of the first direct confirmations of the grain-surface formation of H-2. We compare our observations to ab initio modeling based on Radiative Torque Alignment (RAT) theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据