4.7 Article

ANOMALOUS CO2 ICE TOWARD HOPS-68: A TRACER OF PROTOSTELLAR FEEDBACK

期刊

ASTROPHYSICAL JOURNAL
卷 766, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/766/2/117

关键词

astrochemistry; circumstellar matter; methods: laboratory; stars: formation; stars: individual (HOPS-68, FIR-2); stars: protostars

资金

  1. NASA [1289605, 1355568]

向作者/读者索取更多资源

We report the detection of a unique CO2 ice band toward the deeply embedded, low-mass protostar HOPS-68. Our spectrum, obtained with the Infrared Spectrograph on board the Spitzer Space Telescope, reveals a 15.2 mu m CO2 ice bending mode profile that cannot be modeled with the same ice structure typically found toward other protostars. We develop a modified CO2 ice profile decomposition, including the addition of new high-quality laboratory spectra of pure, crystalline CO2 ice. Using this model, we find that 87%-92% of the CO2 is sequestered as spherical, CO2-rich mantles, while typical interstellar ices show evidence of irregularly shaped, hydrogen-rich mantles. We propose that (1) the nearly complete absence of unprocessed ices along the line of sight is due to the flattened envelope structure of HOPS-68, which lacks cold absorbing material in its outer envelope, and possesses an extreme concentration of material within its inner (10 AU) envelope region and (2) an energetic event led to the evaporation of inner envelope ices, followed by cooling and re-condensation, explaining the sequestration of spherical, CO2 ice mantles in a hydrogen-poor mixture. The mechanism responsible for the sublimation could be either a transient accretion event or shocks in the interaction region between the protostellar outflow and envelope. The proposed scenario is consistent with the rarity of the observed CO2 ice profile, the formation of nearly pure CO2 ice, and the production of spherical ice mantles. HOPS-68 may therefore provide a unique window into the protostellar feedback process, as outflows and heating shape the physical and chemical structure of protostellar envelopes and molecular clouds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据