4.7 Article

DID THE INFANT R136 AND NGC 3603 CLUSTERS UNDERGO RESIDUAL GAS EXPULSION?

期刊

ASTROPHYSICAL JOURNAL
卷 764, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/764/1/29

关键词

galaxies: individual (LMC); galaxies: star clusters: general; open clusters and associations: individual (R136, NGC 3603); stars: kinematics and dynamics

向作者/读者索取更多资源

Based on kinematic data observed for very young, massive clusters that appear to be in dynamical equilibrium, it has recently been argued that such young systems are examples of where the early residual gas expulsion did not happen or had no dynamical effect. The intriguing scenario of a star cluster forming through a single starburst has thereby been challenged. Choosing the case of the R136 cluster of the Large Magellanic Cloud, the most cited one in this context, we perform direct N-body computations that mimic the early evolution of this cluster including the gas-removal phase (on a thermal timescale). Our calculations show that under plausible initial conditions which are consistent with observational data, a large fraction (>60%) of a gas-expelled, expanding R136-like cluster is bound to regain dynamical equilibrium by its current age. Therefore, the recent measurements of velocity dispersion in the inner regions of R136, which indicate that the cluster is in dynamical equilibrium, are consistent with an earlier substantial gas expulsion of R136 followed by a rapid re-virialization (in approximate to 1 Myr). Additionally, we find that the less massive Galactic NGC 3603 Young Cluster (NYC), with a substantially longer re-virialization time, is likely to be found to have deviated from dynamical equilibrium at its present age (approximate to 1 Myr). The recently obtained stellar proper motions in the central part of the NYC indeed suggest this and are consistent with the computed models. This work significantly extends previous models of the Orion Nebula Cluster which already demonstrated that the re-virialization time of young post-gas-expulsion clusters decreases with increasing pre-expulsion density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据