4.7 Article

Tumor necrosis factor-α inhibits myogenesis through redox-dependent and -independent pathways

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 283, 期 3, 页码 C714-C721

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00418.2001

关键词

inflammation; glutathione; nuclear factor-kappa B; myotube; myogenic differentiation

向作者/读者索取更多资源

Muscle wasting accompanies diseases that are associated with chronic elevated levels of circulating inflammatory cytokines and oxidative stress. We previously demonstrated that tumor necrosis factor-alpha (TNF-alpha) inhibits myogenic differentiation via the activation of nuclear factor-kappaB (NF-kappaB). The goal of the present study was to determine whether this process depends on the induction of oxidative stress. We demonstrate here that TNF-alpha causes a decrease in reduced glutathione (GSH) during myogenic differentiation of C2C12 cells, which coincides with an elevated generation of reactive oxygen species. Supplementation of cellular GSH with N-acetyl-l-cysteine (NAC) did not reverse the inhibitory effects of TNF-alpha on troponin I promoter activation and only partially restored creatine kinase activity in TNF-alpha-treated cells. In contrast, the administration of NAC before treatment with TNF-alpha almost completely restored the formation of multinucleated myotubes. NAC decreased TNF-alpha-induced activation of NF-kappaB only marginally, indicating that the redox-sensitive component of the inhibition of myogenic differentiation by TNF-alpha occurred independently, or downstream of NF-kappaB. Our observations suggest that the inhibitory effects of TNF-alpha on myogenesis can be uncoupled in a redox-sensitive component affecting myotube formation and a redox independent component affecting myogenic protein expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据