4.7 Article

ULTRA-RELATIVISTIC, NEUTRINO-DRIVEN FLOWS IN GAMMA-RAY BURSTS: A DOUBLE TRANSONIC FLOW SOLUTION IN A SCHWARZSCHILD SPACETIME

期刊

ASTROPHYSICAL JOURNAL
卷 770, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/770/2/159

关键词

black hole physics; gamma-ray burst: general; neutrinos; relativistic processes

向作者/读者索取更多资源

The structure of a hydrodynamic, double transonic flow driven by neutrino annihilation in the polar region of a Schwarzschild black hole is computed for different energy deposition profiles. The requirement that both the inflow into the black hole and the outflow to infinity pass smoothly through their sonic points fixes the stagnation radius and stagnation pressure. The asymptotic power of the outflow is shown to be the integral of the energy deposition rate above the stagnation radius. The outflow production efficiency depends on the energy deposition profile and is generally higher for shallower profiles. Using recent calculations of the neutrino annihilation rate, we estimate that over 50% of the total energy deposited above the horizon can emerge in the form of a relativistic outflow at infinity. The continuous creation of plasma during the expansion of the outflow leads to generation of a large specific entropy. This has important implications for the prompt photospheric emission in gamma-ray bursts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据