4.7 Article

THE TURBULENCE POWER SPECTRUM IN OPTICALLY THICK INTERSTELLAR CLOUDS

期刊

ASTROPHYSICAL JOURNAL
卷 771, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/771/2/123

关键词

ISM: structure; magnetohydrodynamics (MHD); radiative transfer; turbulence

资金

  1. NSF
  2. NASA Wisconsin Space Grant Institution
  3. NSF AST [0808118]
  4. Center for Magnetic Self-Organization in Astrophysical and Laboratory Plasmas
  5. Deutsche Forschungsgemeinschaft, DFG [Os 177/2-1]
  6. [SFB956/DFG]
  7. Direct For Mathematical & Physical Scien
  8. Division Of Astronomical Sciences [0808118, 1212096] Funding Source: National Science Foundation

向作者/读者索取更多资源

The Fourier power spectrum is one of the most widely used statistical tools to analyze the nature of magnetohydrodynamic (MHD) turbulence in the interstellar medium. Lazarian & Pogosyan predicted that the spectral slope should saturate to -3 for an optically thick medium and many observations exist in support of their prediction. However, there have not been any numerical studies to date for testing these results. We analyze the spatial power spectrum of MHD simulations with a wide range of sonic and Alfvenic Mach numbers, which include radiative transfer effects of the (CO)-C-13 transition. We numerically confirm the predictions of Lazarian & Pogosyan that the spectral slope of line intensity maps of an optically thick medium saturates to -3. Furthermore, for very optically thin supersonic CO gas, where the density or CO abundance values are too low to excite emission in all but the densest shock compressed gas, we find that the spectral slope is shallower than expected from the column density. Finally, we find that mixed optically thin/thick CO gas, which has average optical depths on the order of unity, shows mixed behavior: for super-Alfvenic turbulence, the integrated intensity power spectral slopes generally follow the same trend with sonic Mach number as the true column density power spectrum slopes. However, for sub-Alfvenic turbulence the spectral slopes are steeper with values near -3 which are similar to the very optically thick regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据