4.4 Article

Relationships between the microstructure and properties of thermally sprayed deposits

期刊

JOURNAL OF THERMAL SPRAY TECHNOLOGY
卷 11, 期 3, 页码 365-374

出版社

ASM INTERNATIONAL
DOI: 10.1361/105996302770348754

关键词

Al2O3 deposit; ceramic deposit; erosion wear; fracture toughness; lamellar interface bonding; lamellar structure; microstructure/property relationship; porosity; thermal conductivity; Young's modulus

向作者/读者索取更多资源

Thermally sprayed deposits have layered structure composed of individual splats. The individual splats have quenching microstructure of quasi-stable preferred fine grains. However, this fine-grained microstructure of the deposits is usually not reflected by improved performance of the deposits because a layered structure with two-dimensional voids occurs between lamellar interfaces. The microstructure of the thermal spray deposits with the emphasis on the layer structural parameters is reviewed. Conventionally, one of the most common quantitative parameters used to characterize the microstructure of the thermally sprayed deposits is the porosity, measured by different methods. However, it is illustrated that the relationships between properties and porosity for bulk porous materials processed by conventional processes cannot be applied to thermally sprayed deposits owing to the two-dimensional characteristics of voids. The total porosity in the deposits is not meaningful from the viewpoint of prediction of the deposit properties. An idealized structural model and related parameters, instead of porosity, are proposed to characterize quantitatively the microstructure of the thermally sprayed deposit. The relationships between the properties and the structural parameters are presented for the plasma-sprayed ceramic deposits based on the proposed microstructure model. The properties include the Young's modulus, fracture toughness, erosion resistance, and thermal conductivity of the plasma sprayed ceramic deposits. The correlations of theoretical relationships with reported experimental data are discussed. An agreement of theoretical with observed values suggests that the lamellar structure of the deposit with limited interface bonding is the dominant factor controlling the performance of the deposit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据