4.7 Article

RAPID COAGULATION OF POROUS DUST AGGREGATES OUTSIDE THE SNOW LINE: A PATHWAY TO SUCCESSFUL ICY PLANETESIMAL FORMATION

期刊

ASTROPHYSICAL JOURNAL
卷 752, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/752/2/106

关键词

dust, extinction; planets and satellites: formation; protoplanetary disks

资金

  1. MEXT of Japan [22 . 7006]
  2. Grants-in-Aid for Scientific Research [23103004, 22540242, 10J07006] Funding Source: KAKEN

向作者/读者索取更多资源

Rapid orbital drift of macroscopic dust particles is one of the major obstacles to planetesimal formation in protoplanetary disks. We re-examine this problem by considering the porosity evolution of dust aggregates. We apply a porosity model based on recent N-body simulations of aggregate collisions, which allows us to study the porosity change upon collision for a wide range of impact energies. As a first step, we neglect collisional fragmentation and instead focus on dust evolution outside the snow line, where the fragmentation has been suggested to be less significant than inside the snow line because of the high sticking efficiency of icy particles. We show that dust particles can evolve into highly porous aggregates (with internal densities of much less than 0.1 g cm(-3)) even if collisional compression is taken into account. We also show that the high porosity triggers significant acceleration in collisional growth. This acceleration is a natural consequence of the particles' aerodynamical properties at low Knudsen numbers, i.e., at particle radii larger than the mean free path of the gas molecules. Thanks to this rapid growth, the highly porous aggregates are found to overcome the radial drift barrier at orbital radii less than 10 AU (assuming the minimum-mass solar nebula model). This suggests that, if collisional fragmentation is truly insignificant, formation of icy planetesimals is possible via direct collisional growth of submicron-sized icy particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据