4.7 Article

Basic rheological and mechanical properties of high-volume fly ash grouts

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 16, 期 6, 页码 353-363

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0950-0618(02)00026-0

关键词

class F and C fly ashes; rheological properties; mechanical and strain properties

向作者/读者索取更多资源

Soil, rock and oil-well grouting require enormous amounts of cement and are therefore good examples of areas where high volumes of fly ash could replace cement partially to produce low-cost, environmentally friendly and durable grouts. This paper presents the results of the particle size distribution, three rheological properties (flow time, bleeding and setting time), and five mechanical and strain properties (compressive strength, shear bond strength, modulus of elasticity, Poisson's ratio and drying shrinkage) of high-volume fly-ash (HVFA) grouts (cement replacement by fly ash of over 55% by weight), with and without superplasticizer (SP) and/or anti-washout agent (AWA). Rheological properties are reported for eight water-cementitious materials (cement+fly ash) ratios (W/CM), ranging from 0.4 to 1.3, whereas mechanical and strain properties of hardened grouts are given at W/CM of 0.5, 0.55 and 0.65. The effects of SP and AWA on the flow time of low-W/CM grouts and the stability of high-W/CM grouts were investigated. The results indicate that the addition of fly ash in cement grouts reduces the flow time, improves stability, reduces drying shrinkage, and attains similar compressive and shear bond strengths as pure cement grouts at later ages. Moreover, when SP is used for low-W/CM grouts, the latter destabilizes, and in those cases AWA should be used. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据