4.7 Article

DUST FILTRATION BY PLANET-INDUCED GAP EDGES: IMPLICATIONS FOR TRANSITIONAL DISKS

期刊

ASTROPHYSICAL JOURNAL
卷 755, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/755/1/6

关键词

accretion, accretion disks; astroparticle physics; planet-disk interactions; stars: formation; stars: pre-main sequence

资金

  1. NASA [NNX08AI39G]
  2. University of Michigan
  3. Princeton University
  4. National Science Foundation [0901947, AST-0908269]
  5. NASA [NNX08AI39G, 100695] Funding Source: Federal RePORTER
  6. STFC [ST/J001546/1, ST/F002823/1] Funding Source: UKRI
  7. Science and Technology Facilities Council [ST/F002823/1, ST/J001546/1] Funding Source: researchfish

向作者/读者索取更多资源

By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk-the so-called dust filtration mechanism. We have found that a gap opened by a giant planet at 20 AU in an alpha = 0.01, (M) over dot = 10(-8)M(circle dot) yr(-1) disk can effectively stop dust particles larger than 0.1 mm drifting inward, leaving a submillimeter (submm) dust cavity/hole. However, smaller particles are difficult to filter by a gap induced by a several M-J planet due to (1) dust diffusion and (2) a high gas accretion velocity at the gap edge. Based on these simulations, an analytic model is derived to understand what size particles can be filtered by the planet-induced gap edge. We show that a dimensionless parameter T-s/alpha, which is the ratio between the dimensionless dust stopping time and the disk viscosity parameter, is important for the dust filtration process. Finally, with our updated understanding of dust filtration, we have computed Monte Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions of disks with gaps. By comparing with transitional disk observations (e. g., GM Aur), we have found that dust filtration alone has difficulties depleting small particles sufficiently to explain the near-IR deficit of moderate (M) over dot transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is to invoke both dust filtration and dust growth in the inner disk. In this scenario, a planet-induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration with planet(s) in the disk is a promising mechanism to explain submm observations of transitional disks but it may need to be combined with other processes (e. g., dust growth) to explain the near-IR deficit of some systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据