4.7 Article

THE ROLE OF TURBULENT MAGNETIC RECONNECTION IN THE FORMATION OF ROTATIONALLY SUPPORTED PROTOSTELLAR DISKS

期刊

ASTROPHYSICAL JOURNAL
卷 747, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/747/1/21

关键词

accretion, accretion disks; diffusion; ISM magnetic fields; magnetohydrodynamics (MHD); stars formation; turbulence

资金

  1. Brazilian Agencies FAPESP [2006/50654-3, 2007/04551-0]
  2. CNPq [306598/2009-4]
  3. NSF [AST 0808118]
  4. NSF-sponsored Center
  5. Humboldt Award

向作者/读者索取更多资源

The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions similar to 100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star and planet formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据