4.7 Article

SELF-CONSISTENT MAGNETIC STELLAR EVOLUTION MODELS OF THE DETACHED, SOLAR-TYPE ECLIPSING BINARY EF AQUARII

期刊

ASTROPHYSICAL JOURNAL
卷 761, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/761/1/30

关键词

binaries: eclipsing; stars: evolution; stars: individual (EF Aquarii); stars: interiors; stars: low-mass; stars: magnetic field

资金

  1. National Science Foundation (NSF) [AST-0908345]
  2. Division Of Astronomical Sciences
  3. Direct For Mathematical & Physical Scien [0908345] Funding Source: National Science Foundation

向作者/读者索取更多资源

We introduce a new one-dimensional stellar evolution code, based on the existing Dartmouth code, that self-consistently accounts for the presence of a globally pervasive magnetic field. The methods involved in perturbing the equations of stellar structure, the equation of state, and the mixing-length theory of convection are presented and discussed. As a first test of the code's viability, stellar evolution models are computed for the components of a solar-type, detached eclipsing binary (DEB) system, EF Aquarii, shown to exhibit large disagreements with stellar models. The addition of the magnetic perturbation corrects the radius and effective temperature discrepancies observed in EF Aquarii. Furthermore, the required magnetic field strength at the model photosphere is within a factor of two of the magnetic field strengths estimated from the stellar X-ray luminosities measured by ROSAT and those predicted from Ca II K line core emission. These models provide firm evidence that the suppression of thermal convection arising from the presence of a magnetic field is sufficient to significantly alter the structure of solar-type stars, producing noticeably inflated radii and cooler effective temperatures. The inclusion of magnetic effects within a stellar evolution model has a wide range of applications, from DEBs and exoplanet host stars to the donor stars of cataclysmic variables.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据