4.7 Article

TIME-SERIES PHOTOMETRY OF STARS IN AND AROUND THE LAGOON NEBULA. I. ROTATION PERIODS OF 290 LOW-MASS PRE-MAIN-SEQUENCE STARS IN NGC 6530

期刊

ASTROPHYSICAL JOURNAL
卷 747, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/747/1/51

关键词

stars: individual: (NGC 6530); stars: pre-main sequence; stars: rotation

资金

  1. NSF [2011082275, AST-0808072]
  2. Division Of Astronomical Sciences
  3. Direct For Mathematical & Physical Scien [0808072] Funding Source: National Science Foundation

向作者/读者索取更多资源

We have conducted a long-term, wide-field, high-cadence photometric monitoring survey of similar to 50,000 stars in the Lagoon Nebula Hii region. This first paper presents rotation periods for 290 low-mass stars in NGC 6530, the young cluster illuminating the nebula, and for which we assemble a catalog of infrared and spectroscopic disk indicators, estimated masses and ages, and X-ray luminosities. The distribution of rotation periods we measure is broadly uniform for 0.5 days < P < 10 days; the short-period cutoff corresponds to breakup. We observe no obvious bimodality in the period distribution, but we do find that stars with disk signatures rotate more slowly on average. The stars' X-ray luminosities are roughly flat with rotation period, at the saturation level (log L-X/L-bol approximate to-3.3). However, we find a significant positive correlation between L-X/L-bol and corotation radius, suggesting that the observed X-ray luminosities are regulated by centrifugal stripping of the stellar coronae. The period-mass relationship in NGC 6530 is broadly similar to that of the Orion Nebula Cluster (ONC), but the slope of the relationship among the slowest rotators differs from that in the ONC and other young clusters. We show that the slope of the period-mass relationship for the slowest rotators can be used as a proxy for the age of a young cluster, and we argue that NGC 6530 may be slightly younger than the ONC, making it a particularly important touchstone for models of angular momentum evolution in young, low-mass stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据