4.6 Article

Role of the tumor necrosis factor receptor 2 (TNFR2) in cerebral malaria in mice

期刊

LABORATORY INVESTIGATION
卷 82, 期 9, 页码 1155-1166

出版社

NATURE PUBLISHING GROUP
DOI: 10.1097/01.LAB.0000028822.94883.8A

关键词

-

向作者/读者索取更多资源

Infection of susceptible mice with Plasmodium berghei Anka leads to a syndrome of severe or cerebral malaria. Tumor necrosis factor (TNF) contributes to this syndrome, apparently by acting on its receptor 2 (TNFR2) because TNFR1-/- are susceptible, whereas TNFR2-/- mice are resistant. In this work, we confirmed the essential role of the TNFR2 in cerebral malaria because 6 to 8 days after Plasmodium berghei Anka infection, hypothermia, coma, and death were observed in +/+ or TNFR1-/-, but never in TNFR2-/-, mice. TNF production, evaluated by the serum levels or the mRNA levels in the brain, spleen or lung, was similar in +/+, TNFR1-/-, or TNFR2-/- mice. Macrophage or parasitized red blood cell sequestration in brain or lung was similar in TNFR1-/- and TNFR2-/- mice. Accordingly, up-regulation of CD54 or CD40 in brain or lung was also similar in TNFR1-/- or TNFR2-/- mice. Platelet loss, manifested by thrombocytopenia and the presence of microparticles in plasma, was similar in TNFR1-/- or TNFR2-/- mice. Breakdown of the blood-brain barrier, detected by the diffusion of tracers, was attenuated in both TNFR1-/- and TNFR2-/-, compared with +/+, mice. Endothelial cells from brain capillaries, examined by transmission electron microscopy, were similar in infected TNFR1-/- or TNFR2-/- mice, whereas the basement membrane was enlarged in TNFR1-/- mice. Hypothermic mice were also hyperglycemic, and this was evident in +/+ and TNFR1-/-, but not in TNFR2-/-, mice. In addition, infected +/+ and TNFR1-/- mice became insulin resistant, while in contrast TNFR2-/- became extremely insulin sensitive. This study supports the possibility that coma and death are mediated not by cell sequestration or breakdown of vascular permeability, similar in TNIFR1-/- or TNFR2-/- mice, but by metabolic disturbances selectively mediated by the TNFR2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据