4.7 Review

Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana

期刊

PLANT BIOLOGY
卷 4, 期 5, 页码 535-544

出版社

GEORG THIEME VERLAG KG
DOI: 10.1055/s-2002-35441

关键词

Arabidopsis; disease resistance; ethylene; induced systemic resistance; jasmonic acid; plant defence; Pseudomonas fluorescens; systemic acquired resistance

向作者/读者索取更多资源

To protect themselves from disease, plants have evolved sophisticated defence mechanisms in which the signal molecules salicylic acid, jasmonic acid and ethylene often play crucial roles. Elucidation of signalling pathways controlling disease resistance is a major objective in research on plant-pathogen interactions. The capacity of a plant to develop a broad spectrum, systemic acquired resistance (SAR) after primary infection with a necrotizing pathogen is well-known and its signal transduction pathway extensively studied. Plants of which the roots have been colonized by specific strains of non-pathogenic fluorescent Pseudomonas spp. develop a phenotypically similar form of protection that is called rhizobacteria-mediated induced systemic resistance (ISR). In contrast to pathogen-induced SAR, which is regulated by salicylic acid, rhizobacteria-mediated ISR is controlled by a signalling pathway in which jasmonic acid and ethylene play key roles. in the past eight years, the model plant species Arabidopsis thaliana was explored to study the molecular basis of rhizobacteria-mediated ISR. Here we review current knowledge of the signal transduction steps involved in the ISR pathway that leads from recognition of the rhizobacteria in the roots to systemic expression of broad-spectrum disease resistance in aboveground foliar tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据